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Abstract 

We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free 

multi-agent data analysis system that leverages the power of large language models. 

LAMBDA is designed to address data analysis challenges in data-driven applications through 

innovatively designed data agents using natural language. At the core of LAMBDA are two 

key agent roles: the programmer and the inspector, which are engineered to work together 

seamlessly. Specifically, the programmer generates code based on the user’s instructions and 

domain-specific knowledge, while the inspector debugs the code when necessary. To ensure 

robustness and handle adverse scenarios, LAMBDA features a user interface that allows 

direct user intervention. Moreover, LAMBDA can flexibly integrate external models and 

algorithms through our proposed Knowledge Integration Mechanism, catering to the needs of 

customized data analysis. LAMBDA has demonstrated strong performance on various data 

analysis tasks. It has the potential to enhance data analysis paradigms by seamlessly 

integrating human and artificial intelligence, making it more accessible, effective, and 

efficient for users from diverse backgrounds. The strong performance of LAMBDA in 

solving data analysis problems is demonstrated using real-world data examples. The code for 

LAMBDA is available at https://github.com/AMA-CMFAI/LAMBDA and videos of three 

case studies can be viewed at https://www.polyu.edu.hk/ama/cmfai/lambda.html. 
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Keywords: Code generation via natural language; Data analysis; Large models; Multi-agent 
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1 Introduction 

Over the past decade, the data-driven approach utilizing deep neural networks has driven the 

success of artificial intelligence across many challenging applications in various fields 

(LeCun et al., 2015). Despite these advancements, the current paradigm encounters 

challenges and limitations in statistical and data science applications, particularly in domains 

such as biology (Weissgerber et al., 2016), healthcare (Oakes et al., 2024), and business 

(Weihs and Ickstadt, 2018), which require extensive expertise and advanced coding 

knowledge for data analysis. A significant barrier is the lack of effective communication 

channels between domain experts and sophisticated AI models (Park et al., 2021). To address 

this issue, we introduce a Large Model Based Data Agent (LAMBDA), which is a new open-

source, code-free multi-agent data analysis system designed to overcome this dilemma. 

LAMBDA aims to create a much-needed medium, fostering seamless interaction between 

domain knowledge and the capabilities of AI in statistics and data science. 

Our main objectives in developing LAMBDA are as follows. 

(a) Crossing coding barrier: Coding has long been recognized as a significant barrier for 

domain experts without a background in statistics or computer science, preventing them from 

effectively leveraging powerful AI tools for data analysis (Oakes et al., 2024). LAMBDA 

addresses this challenge by enabling users to interact with data agents through natural 

language instructions, thereby offering a coding-free experience. This approach significantly 

lowers the barriers to entry for tasks in data science, such as data analysis and data mining, 

while simultaneously enhancing efficiency and making these tasks more accessible to 

professionals across various disciplines. 

(b) Integrating human intelligence and AI: The existing paradigm of data analysis is 

confronted with a challenge due to the lack of an efficient intermediary that connects human 

intelligence with artificial intelligence (Park et al., 2021). On one hand, AI models often lack 

an understanding of the unlearned domain knowledge required for specific tasks. On the other 

hand, domain experts find it challenging to integrate their expertise into AI models to 

enhance their performance (Dash et al., 2022). LAMBDA provides a possible solution to 

alleviate this problem. With a well-designed interface in our key-value (KV) knowledge base, 

the agents can access external resources like algorithms or models. This integration ensures 

that domain-specific knowledge is effectively incorporated, meets the need for customized 

data analysis, and enhances the agent’s ability to perform complex tasks with higher accuracy 

and relevance. 

(c) Reshaping data science education: LAMBDA has the potential to become an interactive 

platform that can transform statistical and data science education. It offers educators the 

flexibility to tailor their teaching plans and seamlessly integrate the latest research findings. 

This adaptability makes LAMBDA an invaluable tool for educators seeking to provide 

cutting-edge, personalized learning experiences. Such an approach stands in contrast to the 

direct application of models like GPT-4 (OpenAI, 2023; Tu et al., 2024), offering a unique 

and innovative educational platform. 
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Beyond these features, the design of LAMBDA also emphasizes reliability and portability. 

Reliability refers to LAMBDA’s ability to handle data analysis tasks stably and automatically 

address failures. Portability ensures that LAMBDA is compatible with various large language 

models (LLMs), allowing it to be continuously enhanced by the latest state-of-the-art models. 

To save users time on tasks such as document writing, LAMBDA is equipped with the 

capability for automatic analysis report generation. To accommodate diverse user needs, 

LAMBDA also supports exporting code to IPython notebook files, such as “ipynb” files in 

Jupyter Notebook. 

While GPT-4 has demonstrated state-of-the-art performance in advanced data analysis, its 

closed-source nature constrains its adaptability to the rapidly expanding needs of statistical 

and data science applications and specialized educational fields. Furthermore, concerns 

regarding data privacy and security risks are inherent in the present configuration of GPT-4 

(Bavli et al., 2024). In contrast, by utilizing the open-source LAMBDA, users can alleviate 

concerns about data privacy by preventing the transmission of user data to external servers. 

Additionally, it offers greater flexibility and convenience in integrating domain knowledge, 

installing packages, and utilizing various computational resources. 

LAMBDA demonstrates exceptional performance across various datasets used in our system 

testing. Moreover, it outperforms other data agents in handling complex domain tasks during 

our experiments. In summary, our main contributions are as follows: We propose a well-

engineered architecture for an LLM-based data agent that enables natural language-driven 

data analysis in a conversational manner. Unlike typical end-to-end data agents, our design 

allows human intervention throughout the process, ensuring adaptability when the agent fails 

to complete a task or misinterprets user intent. Moreover, we introduce a Knowledge 

Integration mechanism to effectively handle tasks requiring domain-specific knowledge, 

providing greater flexibility when misalignment occurs in the knowledge. Its ongoing 

development has the potential to enhance statistics and data science, making advanced tools 

more accessible to diverse users. 

This paper begins with the background and related works in Section 2. Section 3 provides a 

detailed description of the proposed LAMBDA method. To evaluate its effectiveness, we 

present our experiments and results in Section 4. Section 5 demonstrates examples and cases 

of LAMBDA’s application in various scenarios, including data analysis, integration of human 

intelligence, and interactive education. The paper concludes with a summary in Section 6. 

More information and details, including implementation, some discussions, datasets, case 

studies, and experimental settings, are provided in the Supplementary Materials. 

2 Background and related works 

In recent years, the rapid progress in LLMs like GPT-3, GPT-4, PaLM, LLaMA, and Qwen 

(Brown et al., 2020; OpenAI, 2023; Chowdhery et al., 2022; Touvron et al., 2023; Bai et al., 

2023) has brought boundless possibilities to the field of artificial intelligence and its 

applications in many fields, including statistics and data science. Benefiting from this 

revolution, LLM-powered agents (LLM agents) are developed to automatically solve 

problems in various domains like the search engine, software engineering, gaming, and data 

science (Guo et al., 2024; Hong et al., 2023; Wu et al., 2023; Zhou et al., 2023; Hong et al., 

2023). 
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2.1 LLMs as data analysis agents 

LLM-based data science agent, or data agent, is dedicated to harnessing the power of LLMs 

to automate data science and analysis tasks (Sun et al., 2024). For example, GPT-4-Advanced 

Data Analysis and ChatGLM-Data Analysis can analyze user’s data files, perform 

computations, and generate visualizations (OpenAI, 2023). Some works integrate LLMs into 

Jupyter Notebooks. For instance, MLCopilot (Zhang et al., 2023) and Chapter (Chapyter, 

2023), enable users to interact directly with the notebook, greatly enhancing flexibility. 

However, they cannot automatically fix errors when they occur and require additional magic 

commands to support natural language input. 

Meanwhile, some researchers focus on designing end-to-end data agents to automate the 

entire pipeline, including data preprocessing and model evaluation, without human 

intervention. For example, Data Interpreter (Hong et al., 2024) and TaskWeaver (Qiao et al., 

2023) accomplish their tasks through planning and iterative steps. However, current state-of-

the-art LLM/VLM-based agents do not reliably automate complete data science workflows 

(Cao et al., 2024). While fully relying on LLMs for each step reduces human effort, it also 

significantly increases instability and uncertainty. In addition, if any intermediate step does 

not align with the user’s intent, the process must be repeated, potentially leading to token 

waste. In contrast, LAMBDA is designed to support a human-agent collaboration mode, 

allowing for human intervention at any stage of the process if necessary. 

Furthermore, these works have not adequately addressed the high degree of user flexibility 

needed in data analysis, such as the integration of custom algorithms or statistical models 

according to user preferences. This flexibility is crucial for enhancing data analysis tasks in 

domain-specific applications and in statistical and data science education. To address this 

gap, we have designed a Knowledge Integration Mechanism that allows for the easy 

incorporation of user resources into our agent system. 

2.2 Multi-agent collaboration 

A multi-agent system consists of numerous autonomous agents that collaboratively engage in 

planning, discussions, and decision-making, mirroring the cooperative nature of human group 

work in problem-solving tasks (Guo et al., 2024). Each agent has unique capabilities, 

objectives, and perceptions, operating either independently or collectively to tackle complex 

tasks or resolve problems (Huang et al., 2023a). Hong et al. (2023) proposed MetaGPT, 

modeled after a software company, consisting of agents such as Product Manager, Architect, 

Project Manager, Engineer, and QA Engineer, efficiently breaking down complex tasks into 

subtasks involving many agents working together. However, even for simple tasks like data 

visualization, MetaGPT consume a large number of tokens and require more time. In 

addition, they generate engineering files that need manual execution and lack the immediacy 

and interactivity essential for intuitive data analysis. In contrast, LAMBDA simplifies the 

collaboration process by involving only two agents to simulates data analysis workflows, 

programmer and inspector respectively, reducing token and time consumption. Moreover, its 

well-designed user interface allows users to intuitively view the analysis results directly on 

the screen. A comparison and discussion can be found in the supplement materials. 
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2.3 Knowledge integration 

Addressing tasks that require domain-specific knowledge presents a significant challenge for 

AI agents (Zhang et al., 2024). Incorporating knowledge into LLMs through in-context 

learning (ICL) is a promising strategy for acquiring new information. A well-known 

technique in this regard is retrieval-augmented generation (RAG) (Gao et al., 2023), which 

enhances the accuracy and reduces hallucinations of LLM answers by retrieving external 

sources (Lewis et al., 2020; Huang et al., 2023b; Borgeaud et al., 2022; Mialon et al., 2023). 

In RAG, resources are divided into sub-fragments, embedded into vectors, and stored in a 

vector database. The model first queries this database, identifying document fragments 

relevant to the user’s query based on the similarity. These fragments are then utilized to 

refine the answers generated by the LLMs through ICL (Lewis et al., 2020). However, 

deploying a general RAG approach in data analysis introduces specific challenges. First, the 

user’s instructions may not align closely with the relevant code fragments in the 

representation space, resulting in inaccurate searches. Second, when dealing with extensive 

code, the agents might struggle to contextualize the correct code segments, where accuracy 

and completeness are essential for codes and final results. 

In addition, custom APIs (Hong et al., 2024) can be implemented to handle domain-specific 

tasks (Qiao et al., 2023; Hong et al., 2024). For example, systems like Data Interpreter and 

TaskWeaver invoke the corresponding Tools/Plugins directly within the generated code. 

Compared to direct parameter-passing, this approach offers greater flexibility in tool usage. 

However, since the agent cannot access the implementation details of these plugins, it is 

limited to simple plugin usage and may struggle to resolve misalignment between tools and 

human instructions when plugin usage is inappropriate. 

To address these challenges, we develop a specially designed KV knowledge base with 

integration methods. This allows users to choose between different modes, including ‘Full’ 

and ‘Core’, based on the complexity, length of the knowledge context, and specific task 

requirements. By integrating knowledge, our agent system becomes more adaptable to 

domain-specific tasks, leveraging human expertise more effectively. 

3 Methodology 

Our proposed multi-agent data analysis system, LAMBDA, consists of two agents that 

cooperate seamlessly to solve data analysis tasks using natural language, as shown in Figure 

1. The macro workflow describes the code generation process based on user instructions and 

subsequently executing that code. 

3.1 Overview 

LAMBDA is structured around two core agent roles: the “programmer” and the “inspector,” 

who are tasked with code generation and error evaluation, respectively. The two agents can 

be implemented separately using either the same or different LLMs. When users submit an 

instruction, the programmer agent writes code based on the provided instruction and dataset. 

This code is then executed within the kernel of the host system. Should any errors arise 

during execution, the inspector intervenes, offering suggestions for code refinement. The 

programmer takes these suggestions into account, revises the code, and resubmits it for re-

evaluation. This iterative cycle continues until the code runs error-free or a preset maximum 
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number of attempts is reached. In order to cope with adverse situations and enhance its 

reliability and flexibility, a human intervention mechanism is integrated into the workflow. 

This feature allows users to modify and run the code directly and intervene when necessary. 

The multi-agent collaboration algorithm is demonstrated in Algorithm 1. 

Algorithm 1 Multi-agent Collaboration. nA , nC  are the answer and extracted code by the 

programmer agent in iteration n. We assume each nA  contains nC , otherwise, the programmer’s 

reply will be returned to the user directly. r is the execution result, E indicates an error, nS  are 

suggestions provided by the inspector in iteration n, hC  is the code written by a human. The final 

response is denoted as R. 

Require: Pr: Programmer agent  

Require: I: Inspector agent  

Require: d: Dataset provided by user  

Require: ins: Instructions provided by user  

Require: T: Maximum number of attempts  

1: 0n   Initialize iteration counter  

2: n nC A , ( , )nA Pr d ins   Extract code and answer by Programmer  

3: 
,  success

execute( )
,  error

n

r
r C

E


 


  Code execution, similarly to subsequent r  

4: while r E  and n T  do  Self-correcting mechanism start  

5: 1n n    

6: 1( , )n nS I C E   Inspector provides suggestions  

7: 1, ( , , )n n n n nC A A Pr C S E    Programmer modifies code  

8: execute( )nr C   Execute modified code  

9: end while  

10: if r E  then  

11: execute( )hr C   Human intervention (Optional)  

12: ( )hR C Pr r    Final response in natural language  

13: end if  

14: ( )nR C Pr r    Final response in natural language  
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3.2 Programmer agent 

The main responsibility of the programmer is to write code and respond to the user. Upon the 

user’s dataset upload, the programmer receives a tailored system prompt that outlines the 

programmer’s role, environmental context, and the I/O formats. This prompt is augmented 

with examples to facilitate few-shot learning for the programmer. Specifically, the system 

prompt encompasses the user’s working directory, the storage path of the dataset, the 

dimensions of the dataset, the name of each column, the type of each column, information on 

missing values, and statistical description. 

The programmer’s workflow can be summarized as follows: initially, the programmer writes 

code based on instructions from the user or the inspector; subsequently, the program extracts 

code blocks from the programmer’s output and executes them in the kernel. Finally, the 

programmer generates a final response based on the execution results and communicates it to 

the user. This final response consists of a summary and suggestions for the next steps. 

3.3 Inspector agent and self-correcting mechanism 

The inspector’s role is to provide modification suggestions when errors occur in code 

execution. The prompt of the inspector includes the code written by the programmer during 

the current dialogue round and the error messages from the kernel. The inspector will offer 

actionable revision suggestions to the programmer for code correction. This suggestion 

prompt contains the erroneous code, kernel error messages, and the inspector’s suggestions. 

This collaborative process between the two agents iterates several rounds until the code 

executes successfully or the maximum number of attempts is reached. This self-correcting 

mechanism enables the programmer and inspector to make multiple attempts in case of error. 

A case of self-correcting mechanism and released experiment can be found in the 

Supplementary Materials. 

3.4 Integrating human intelligence and AI 

Beyond leveraging the inherent knowledge of LLMs, LAMBDA is further enhanced to 

integrate human intelligence through external resources such as customized algorithms and 

statistical models from users. As mentioned above, the challenges faced by general RAG 

methods in data analysis stem from the potential lack of clear correlation between user 

instructions and code fragments in the representation space, as well as the impact of the 

length of code fragments. We design a special KV knowledge base for this challenge. 

The KV knowledge base is a repository for housing external resources from users in key and 

value pairs. Specifically, we format the code of resources into key-value pairs: the key 

represents the resource description, and the value denotes the code. The user’s query will be 

matched within the knowledge base to select the code with the highest similarity. Figure 2 

demonstrates the workflow of knowledge matching in LAMBDA. We define the knowledge 

base as {( , ) 1,2, , },i id c i n  ∣  where id  represents the description of the i-th piece of 

knowledge and ic  represents the corresponding source code. 

When the user issues an instruction ins, an embedding model  encodes all descriptions in 

the knowledge base and the ins, such as Sentence-BERT (Reimers and Gurevych, 2019). The 
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embedding tensors for descriptions and instruction are represented by 
ide  and inse  

respectively. The cosine similarity between them is calculated to select knowledge with a 

similarity score greater than a threshold  , with the highest-scoring match chosen as the 

relevant knowledge.  

Let the embedding function be , the 
ide  and inse  are formulated as follows 

( ), {1,2, , },
id id i n  e  and ( ).ins inse  The similarity iS  between description and 

instruction is computed using cosine similarity as 

·
( , ) {1,2, , }.i

i

i

d ins

i d ins

d ins

S i n   
e e

e e
e e‖ ‖‖ ‖

 

The matched knowledge k with the highest iS  is selected while it satisfies iS  , computed 

as 

 *

*

{ ( , ) }, arg max ( , )· {1,2, , }.
i i d insi

i d ins Si i
k c i S i n    e ee e 1  

The knowledge k will be embedded in ICL for the LLM to generate answer Â . Formally, 

given a query q, matched knowledge k, a set of demonstrations 

1 1 1 2 2 2{( , , ), ( , , ), , ( , , )} n n nD q k a q k a q k a  , and the LLM , the model estimates the 

probability ( | , , )a q k D  and outputs the answer Â  that maximizes this probability. The final 

response Â  is generated by the model  as ˆ ( , ).A q D   

The matching threshold   defines the required similarity between a knowledge description 

and a user instruction, directly influencing the complexity of retrieving relevant knowledge. 

A higher   imposes stricter matching criteria, reducing the chance of retrieval, whereas a 

lower   increases the probability of identifying a match. 

The optimal selection of   depends on multiple factors. For example, when users aim to 

incorporate specific knowledge into a task, a lower   value increases the chance of retrieving 

the relevant information. Furthermore, the length of the knowledge description plays a critical 

role, as longer descriptions typically necessitate a lower   value since user instructions are 

generally more concise. By default, we recommend setting   to 0.2. However, this value can 

be adjusted based on the aforementioned factors to optimize retrieval performance. 

By integrating k through ICL, the model effectively combines retrieved domain knowledge 

with contextual learning to provide answers that are more accurate. Moreover, LAMBDA 

offers two integration modes: ‘Full’ and ‘Core’. In the ‘Full’ mode, the entire knowledge is 

utilized as the context in ICL. In the ‘Core’ mode, the core functions are processed through 

ICL, while other functions are executed directly in the back-end. This approach allows the 

agents to focus on modifying the core function directly, without the need to understand or 

implement the sub-functions within it. The ‘Core’ mode is particularly effective for scenarios 

involving lengthy code, as it eliminates the need to process the entire code through ICL. 

These two modes of knowledge integration provide substantial flexibility for handling tasks 
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that require domain-specific knowledge. We evaluate our Knowledge Integration Mechanism 

in Table 8 through several domain tasks. 

In summary, the Knowledge Integration Mechanism empowers LAMBDA to perform 

domain tasks and offers the flexibility needed to address complex data analysis challenges. 

3.5 Kernel, report generation and code exporting 

LAMBDA uses IPython as its kernel to manage sequential data processing, where each 

operation builds on the previous one, such as standardization followed by one-hot encoding. 

Implementation details are in the Supplementary Materials. LAMBDA also generates 

analysis reports from dialogue history, including data processing steps, visualizations, model 

descriptions, and evaluation results. Users can choose from various report templates, and the 

agent creates reports via ICL, allowing users to focus on higher-value tasks. A sample report 

is in Figure 9 and the Supplementary Materials. Moreover, users can download their 

experimental code as an IPython notebook. 

3.6 User interface 

LAMBDA provides an accessible user experience similar to ChatGPT. Users can upload 

datasets and describe tasks in natural language, supported by LLMs like Qwen-2, which 

recognizes 27 languages. It is recommended to prompt LAMBDA step-by-step, mimicking 

data analysts’ approach, to maintain control and embody the “human-in-the-loop” concept. 

LAMBDA generates results, including code, figures, and models, which users can copy and 

save with a single click. Even those without expertise in statistics or data science can train 

advanced models by simply asking for recommendations, such as XGBoost and AdaBoost. 

Advanced users can customize LAMBDA’s knowledge via an interface template. Users can 

also export text reports and code for further study. A usage example is shown in Figure 9. 

LAMBDA’s interface is designed to be accessible to users of all backgrounds. 

To summarize, the programmer agent, inspector agent, self-correcting mechanism, and 

human-in-the-loop components collectively ensure the reliability of LAMBDA. The 

integration of knowledge makes LAMBDA scalable and flexible for domain-specific tasks. 

To enhance portability, we provide an OpenAI-style interface for LAMBDA. This ensures 

that most LLMs, once deployed via open-source frameworks such as vLLM (Kwon et al., 

2023) and LLaMA-Factory (Zheng et al., 2024b), are compatible with LAMBDA. 

3.7 Prompt 

We present examples of prompts for the roles of programmer, inspector, self-corrector, and 

knowledge integrator. Additional prompt examples and case studies are available in the 

Supplementary Materials. 

Figure 3 gives an example prompt for the data analyst at the start of the analysis session. 

Figure 4 shows a system prompt about the dataset, which provides essential information to 

the programmer agent. 
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After obtaining the execution results, a prompt such as the one given in Figure 5 can be used 

to format the output, enabling the programmer agent to provide an explanation or suggest the 

next steps. 

When an error occurs, a prompt for the inspector is employed to guide the inspector in 

identifying the cause of the bug and to offer revision suggestions (Figure 6). 

Figure 7 presents an example prompt for the programmer revising the error code. 

For knowledge integration, the system message prompt and retrieval result are shown in 

Figure 8. 

4 Experiments 

4.1 Data experiments 

The current data analysis paradigm relies on programming software and languages such as R 

(R Core Team, 2023), SAS (SAS Institute Inc., 2015), and Python (Python Software 

Foundation, 2023) for computation and experimentation. To gain practical experience and 

evaluate LAMBDA’s performance in real-world data science tasks, we first applied 

LAMBDA to several standard datasets for classification and regression analysis. In addition, 

we conducted further investigations in broader statistical analysis scenarios, such as high-

dimensional data, missing data, image data, and text data, to examined its robustness and 

versatility. All information of the datasets used can be found in the supplementary materials. 

For classification problems, we measured accuracy on the test data, defined as the ratio of 

correctly classified instances to the total number of instances. For regression problems, we 

used Mean Squared Error (MSE), which is the average of the squared differences between the 

predicted values and the actual values in the test data. The formula for MSE is: 

2

1

ˆMSE (1/ ) ( ) ,
n

i i

i

n y y


   where n is number of data points, iy  is the observed value, ˆ
iy  is 

the predicted value. We employed 5-fold cross validation for evaluation in all the cases. 

Table 1 lists the datasets used in our experiments and case studies. 

4.1.1 Experiments with classical tabular data 

We initially applied LAMBDA to several classical datasets, covering both classification and 

regression tasks. To facilitate comparison, we documented the analysis methods employed by 

LAMBDA and then manually conducted the same analyses using R. The results are 

summarized in Table 2, with the corresponding results from the R analyses presented in 

parentheses. 

The results presented in Table 2 demonstrate LAMBDA’s robust performance in executing 

data analysis tasks. These results are either superior to or on par with those obtained using R. 

These outcomes highlight LAMBDA’s effectiveness in leveraging various models across 

tabular data scenarios. Furthermore, the results indicate that LAMBDA performs at a level 

comparable to that of a data analyst proficient in R. This suggests the potential for systems 

like LAMBDA to become indispensable tools for data analysis in the future. Notably, there 
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was no human involvement in the entire experimental process with LAMBDA, as only 

prompts in English were provided. 

In summary, the experimental results demonstrate that LAMBDA achieves human-level 

performance and can serve as an efficient and reliable data agent, assisting individuals in 

handling data analysis tasks. 

4.1.2 Experiments with high-dimensional data and unstructured data 

To validate LAMBDA’s robustness and versatility, we further explored its application across 

a broader range of data scenarios, including high-dimensional data, missing data, image data, 

and text data. 

•  High-dimensional data: We evaluated LAMBDA on the following three challenging 

high-dimensional clinical datasets: TCGAmirna (Bentink et al., 2012), EMTAB386 

(Colaprico et al., 2015), and GSE49997 (Pils et al., 2012). 

We summarize the sample size and dimensions in Table 3. The test results are presented in 

Table 4. More detailed descriptions of these three datasets are given in the Supplementary 

Materials. We found that LAMBDA consistently applies dimensionality reduction 

techniques, such as Principal Component Analysis (PCA), as a preprocessing step. This 

allows us to apply methods like logistic regression without the regularization. The results 

indicate that LAMBDA is capable of handling high-dimensional data. 

•  Missing data: We evaluated LAMBDA on three datasets containing missing values, with 

results summarized in Table 5. We observe that LAMBDA tends to prioritize deleting the 

observations that contain missing values. However, with an appropriate prompt, LAMBDA 

can also attempt to impute missing values (e.g., mean value). When errors arise due to 

missing values, the Inspector agent effectively identifies the issue, notifies the Programmer 

agent, and applies the necessary corrections. 

•  Image data: We used LAMBDA to train a handwritten digit classifier based on the 

MNIST dataset. We prompted LAMBDA to utilize various neural network architectures, 

such as Convolutional Neural Networks (CNNs) and Transformers, as backbone models. The 

results of this experiment are presented in Table 6. According to Table 6, we find LAMBDA 

can effectively implement and apply deep learning architectures like CNNs and Transformers 

for image classification tasks. 

•  Text data: We used LAMBDA to train a spam detection classifier based on the SMS Spam 

Collection Dataset. Similar to our approach with image data, we prompted LAMBDA to 

experiment with different backbone models for this task. The results are summarized in Table 

7. As shown in Table 7, LAMBDA successfully performed text classification tasks. Notably, 

when prompted to use a Transformer-based architecture, LAMBDA employed DistilBERT-

Base-Uncased for transfer learning, which significantly improved both training efficiency and 

model performance. 

Overall, our findings indicate that LAMBDA is not only capable of handling tabular tabular 

tasks but also effectively processing image and text data. In future work, we aim to explore 

more complex and diverse data scenarios. 
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4.2 Performance of Knowledge Integration 

We collected three domain-specific tasks to evaluate the proposed Knowledge Integration 

Mechanism and compare it with advanced data analysis agents. Specifically, the tasks involve 

utilizing the recent algorithm packages (e.g., PAMI (Piotrowski et al., 2021)), implementing 

optimization algorithms (e.g., computing the nearest correlation matrix), and training the 

latest research models (e.g., non-negative neural networks). For each task, we define a score 

 that is calculated as follows: 

0, code error and execution error, or exceeded runtime limit,

0.5, code error and execution successful,

0.8, code successful, execution error due to other issues, e .g. environment,

1, both code and execut



ion successful.








 

To ensure maximum alignment in experimental settings, we converted the code into 

corresponding tools for agents equipped with a tools mechanism. For agents lacking such a 

mechanism, we directly included the code in their context. All agents are implemented using 

GPT-3.5, except for methods and platforms that have their own models, such as GPT-4-

Advanced Data Analysis, ChatGLM-Data Analysis, and OpenCodeInterpreter. Since each 

task can be completed within one minute, we set a maximum runtime limit of 5 minutes to 

prevent some agents from becoming stuck in infinite self-modification loops. 

•  Pattern Mining Piotrowski et al. (2021) introduce PAMI (PAttern MIning), a cross-

platform, open-source Python library offering algorithms to uncover patterns in diverse 

databases across multiple computing architectures.  

•  Nearest Correlation Matrix Qi and Sun (2006) propose a Newton-type method specifically 

designed for the nearest correlation matrix problem. Numerical experiments validate the 

method’s fast convergence and high efficiency.  

•  Fixed Points Non-negative Neural Networks Rage et al. (2024) analyze nonnegative neural 

networks, which are defined as neural networks that map nonnegative vectors to nonnegative 

vectors. 

Table 8 demonstrates the effectiveness of LAMBDA’s Knowledge Integration mechanism. 

Specifically, our results showed that many methods scored zero, particularly when the code 

was lengthy or involved unfamiliar packages not encountered during LLM training. In these 

situations, most other approaches struggle with one-shot learning. Two exceptions are Data 

Interpreter and TaskWeaver, which successfully complete the task using pre-defined 

Plugins/Tools. With the pre-defined Plugins/Tools, they can execute operations internally 

without requiring the LLM to generate precise code. This mechanism is similar to the ‘Core’ 

mode of our LAMBDA. 

With these tools, the LLM only needs to learn a given code usage example rather than 

generating the full internal implementation, even when it has access to those details. 

Although these approaches are generally suitable, the agent is likely to make mistakes when 

there is the certain misalignment between the users’ instructions and integrated knowledge. In 
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such circumstances, we need to utilize the ‘Full’ mode of our LAMBDA. To further support 

our claim, we designed two additional experiments. 

We take the fixed point non-negative neural networks as a example. We further explore the 

following two cases that involve misalignment in integrating knowledge/tools and human 

instruction, which require modifications to the tools (the loss and network mapping are 

annotated in the schema): 

•  Case 1: The instruction specifies the use of L1 Loss, whereas the tool are originally 

configured with MSE Loss.  

•  Case 2: The instruction specifies a network structure mapping as follows: 

– Encoder: 784 400 , whereas 784 200  originally configured.  

– Decoder: 400 784 , whereas 200 784  originally configured. 

From Table 9, we observe that in Cases 1 and 2, which require modifications to the tools, 

both TaskWeaver and Data Interpreter directly use the original tools without recognizing that 

the tools no longer meet the new requirements although the loss and network mapping are 

annotated in the schema. In contrast, due to the visibility of the knowledge code under ‘Full’ 

mode, LAMBDA identifies that the original code cannot satisfy the new requirements, makes 

the necessary adjustments, and successfully completes the two cases. 

5 Examples 

We present an example of using LAMBDA for building a classification model in Figure 9. 

We also provide three case studies in video format to demonstrate the use of LAMBDA in 

data analysis, integrating human intelligence and AI, and education. 

•  Data Analysis We simulate scenarios in which the user requests LAMBDA to perform 

various tasks, including data preprocessing, data visualization, and model training, on the 

provided Iris dataset (Fisher, 1988). LAMBDA consistently delivers accurate responses. 

Additionally, LAMBDA generates an analysis report based on the chat history. A 

demonstration of this process is given in the first video at 

https://www.polyu.edu.hk/ama/cmfai/lambda.html. 

•  Integrating Human Intelligence and AI We demonstrated the Knowledge Integration 

capabilities of LAMBDA by computing the nearest correlation matrix using the Quadratically 

Convergent Newton Method. We first highlighted the limitations of GPT-4-Advanced Data 

Analysis in performing this task, thereby underscoring the value of LAMBDA through 

comparison. A demonstration is given in the second video at 

https://www.polyu.edu.hk/ama/cmfai/lambda.html. 

•  Interactive Education We consider an educational scenario in which the teacher uses 

LAMBDA to design the exercise assignments, and the students use LAMBDA to complete 

exercises. The exercise dataset used is Abalone. This educational support system enhances 

the efficiency of both teaching and learning. A demonstration is given in the third video at 

https://www.polyu.edu.hk/ama/cmfai/lambda.html. 
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6 Conclusion 

LAMBDA is an open-source multi-agent data analysis system that effectively integrates 

human intelligence with artificial intelligence. Experimental results demonstrate that 

LAMBDA achieves satisfactory performance in handling various data analysis tasks. In the 

future, LAMBDA can be further enhanced with advanced planning, reasoning techniques, 

and knowledge integration methods to address a broader range of domain-specific tasks. Our 

results and examples underscore the significant potential of LAMBDA to enhance both 

statistical and data science practice and education. 

By bridging the gap between human expertise and AI capabilities, LAMBDA aims to 

democratize data science and statistical analysis, fostering a more inclusive environment for 

innovation and discovery. Its open-source nature encourages collaboration and continuous 

improvement from the global research community, allowing researchers and developers to 

contribute to its evolution. As LAMBDA continues to develop, it has the potential to become 

an invaluable tool for statisticians, data scientists, and domain experts, enhancing their ability 

to analyze data efficiently and effectively. 

Moreover, LAMBDA holds significant potential for statistical and data science education. Its 

natural language interface lowers barriers for educators and students, enabling them to focus 

on problem formulation rather than getting bogged down by syntactic complexities. By 

generating executable code for various tasks, LAMBDA provides immediate, actionable 

feedback, which can enhance the learning experience by allowing students to see the direct 

impact of their queries and hypotheses. This capability not only aids in teaching fundamental 

concepts but also empowers students to experiment and explore data-driven insights 

independently. 

Future work on LAMBDA could focus on several key areas. First, enhancing LAMBDA’s 

ability to seamlessly integrate and leverage large models from various domains for statistical 

analysis could significantly improve its capacity to tackle complex data analysis tasks. 

Second, improving the user interface and increasing user satisfaction would make the system 

more accessible to non-experts. Third, incorporating real-time data processing capabilities 

could enable LAMBDA to handle streaming data, which is increasingly important in many 

applications. Finally, expanding the system’s support for collaborative work among multiple 

users could further enhance its utility in both educational and professional settings. We plan 

to implement LAMBDA in our classroom teaching scenarios, continuously gather feedback 

from various groups, and use user satisfaction as a metric for evaluating LAMBDA. 

In conclusion, LAMBDA represents a meaningful step forward in integrating human and 

artificial intelligence for data analysis. Its continued development and refinement have the 

potential to advance the fields of statistics and data science, making sophisticated analytical 

tools more accessible to users from diverse backgrounds. We have made our code available at 

https://github.com/AMA-CMFAI/LAMBDA. 
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Figure 1: Overview of LAMBDA. LAMBDA features two core agents: the “programmer” for 

code generation and the “inspector” for error evaluation. The programmer writes and 

executes code based on user instructions, while the inspector suggests refinements if errors 

occur. This iterative process continues until the code is error-free or a maximum number of 

attempts is reached. A human intervention mechanism allows users to modify and run the 

code directly when needed.  
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Figure 2: Knowledge Integration Mechanism in LAMBDA: Knowledge Matching selects 

codes from the knowledge base by comparing descriptions with the instruction. Two 

integration modes are available: ‘Full’ mode injects the entire knowledge code into the LLM 

via ICL, while ‘Core’ mode segments the code into essential usage for ICL and runnable code 

for back-end execution.  
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Figure 3: Prompt example for the data analyst. 

 

Figure 4: Prompt example for the dataset. 

 

Figure 5: Prompt example for the execution result. 

 

Figure 6: Prompt example for inspector. 
Acc

ep
te

d 
M

an
us

cr
ipt



 

Figure 7: Prompt example for code correction. 

 

Figure 8: Prompt example for knowledge integration. 
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Figure 9: An example of using LAMBDA for classification analysis with the Wine dataset. 
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Table 1: Datasets used in this study. The Genomic datasets include the following three 

datasets: TCGAmirna (Bentink et al., 2012), EMTAB386 (Colaprico et al., 2015), and 

GSE49997 (Pils et al., 2012). 

DataSets Usage 

AIDS Clinical Trials Group Study 175 (Hammer et al., 1996)  Classification 

NHANES (Dinh et al., 2023). Classification 

Breast Cancer Wisconsin (Wolberg et al., 1995)  Classification 

Wine (Aeberhard and Forina, 1991)  Classification 

Concrete Compressive Strength (Yeh, 2007)  Regression 

Combined Cycle Power Plant (Tfekci and Kaya, 2014)  Regression 

Abalone (Nash et al., 1995)  Regression - Case Study 

Airfoil Self-Noise (Brooks et al., 2014)  Regression 

Iris (Fisher, 1988)  Classification - Case Study 

Heart Disease (Janosi et al., 1988)  Regression - Case Study 

Genomic Datasets (Anh, 2023)  High-Dimensional Data 

Framingham Heart Study Dataset (FHS, 1948)  Missing Data 

Student Admission Records (Kaggle SAD, 2016)  Missing Data 

MINIST (LeCun et al., 1998)  Image Data 

SMS Spam (Almeida et al., 2011)  Text Data 
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Table 2: The experimental results obtained using LAMBDA and R are presented, with the R 

results indicated in parentheses. Classification problems were evaluated using accuracy, 

where higher values indicate better performance. Regression problems were assessed using 

mean squared error (MSE), where lower values are preferable. All results were derived from 

5-fold cross-validation. The difference result bewteen LAMBDA and R is introduced by 

different data processing, hyper-paprameters and cross-validation. 

 
Model  Datasets  

   

  
AIDS (%) NHANES (%) Breast Cancer(%) Wine(%) 

Classification  Logistic Regression 86.54 (86.44) 99.43 (99.96) 98.07 (97.72) 98.89 (98.86) 

 
SVM 88.45 (88.59) 98.82 (98.86) 97.72 (98.25)  98.89 (98.33) 

 
Neural Network 88.82 (87.89) 99.91 (99.91) 97.82 (97.01) 82.60 (98.87) 

 
Decision Tree 87.70 (88.78) 100 (100)  94.26 (93.32) 92.14 (90.91) 

 
Random Forest 89.29 (88.73) 100 (100)  96.84 (95.96) 98.33 (98.30) 

 
Bagging 89.62 (88.82) 100 (100)  96.49 (94.90) 96.65 (96.60) 

 
Gradient Boost 89.20 (88.83) 100 (100)  96.84 (94.74) 96.65 (98.89)  

 
XGBoost 89.67 (89.62) 100 (100)  97.54 (97.19) 95.54 (98.87) 

 
AdaBoost 88.92 (89.10) 100 (100)  97.72 (97.55) 93.89 (97.71) 

 
Best Accuracy  89.67 (89.62) 100 (100)  98.07 (98.25)  98.89 (98.89)  

  
Concrete  Power Plant  Abalone  Airfoil  

Regression  Linear Regression 0.4596 (0.3924) 0.0714 (0.0713) 0.5086 (0.6867) 0.5717 (0.6972) 

 
Lasso 0.5609 (0.3918) 0.0718 (0.0713) 0.8042 (0.4739) 0.5738 (0.4886) 

 
SVR 0.4012 (0.4780) 0.0534 (0.0489) 0.4542 (0.4408)  0.3854 (0.3725) 

 
Neural Network 0.2749 (0.3055) 0.0612 (0.0567) 0.4551 (0.7185) 0.4292 (0.2604) 

 
Decision Tree 0.5242 (0.5837) 0.0551 (0.1175) 0.5566 (0.5472) 0.3823 (0.2559) 

 
Random Forest 0.4211 (0.2755) 0.0375 (0.0363) 0.4749 (0.4460) 0.2655 (0.3343) 

 
Gradient Boost 0.3414 (0.3605) 0.0315 (0.0538) 0.4778 (0.5840) 0.2528 (0.2888) 

 
XGBoost 0.3221 (0.2991) 0.0319 (0.0375) 0.4778 (0.4441) 0.2741 (0.2832) 

 
CatBoost 0.2876 (0.4323) 0.0325 (0.0568) 0.4795 (0.4516) 0.2529 (0.2638) 

 
Best MSE  0.2749 (0.2755) 0.0315 (0.0363) (0.4542) 0.4408  0.2528 (0.2559) 
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Table 3: Experiment datasets with their sizes and dimensions (rows, columns). 

Data TCGAmirna EMTAB386 GSE49997 

(Size, Dimension) (544, 802) (129, 10360) (194, 16051) 

 

Table 4: Performance on the high-dimensional datasets. The results are reported in terms of 

accuracy through 5-fold cross-validation. 

Model TCGAmirna (%) EMTAB386 (%) GSE49997 (%) 

Logistic Regression 52.58 54.18 67.52 

Decision Tree 54.42 57.45 63.45 

Random Forest 55.16 61.20 67.54 

Bagging 56.62  58.21 70.63  

Gradient Boosting 54.78 55.08 70.62 

XGBoost 55.15 58.15 70.62 

AdaBoost 55.15 57.45 70.62 

Neural Network 54.22 61.23  66.48 

Best 56.62  61.23  70.63  
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Table 5: Performance on Framingham, StuRecord and Heart Disease datasets. The results are 

reported in terms of accuracy through 5-fold cross-validation. 

Model Framingham (%) StuRecord (%) Heart Disease (%) 

Logistic Regression 85.35  50.36 59.41 

Neural Network 84.95 57.28 60.40  

Decision Tree 84.27 52.96 52.49 

Random Forest 85.19 55.40 60.39 

Bagging 85.02 58.65 60.06 

Gradient Boosting 85.12 60.50 58.41 

XGBoost 85.19 61.05  60.71 

AdaBoost 84.98 56.63 59.42 

Best 85.35  61.05  60.40  

 

Table 6: Performance on the MNIST Dataset. 

Model Accuracy (%) 

CNN 99.19 

Transformer 97.23 

 

Table 7: Performance of different backbones on the SPAM classification task. 

Model Accuracy (%) 

Multinomial Naive Bayes 98.39 

BERT 99.37 
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Table 8: Performance of the Knowledge Integration Mechanism. In the table, ‘PM’ refers to 

pattern mining, ‘NCM’ refers to the nearest correlation matrix, and ‘FPNENN’ stands for 

fixed points in non-negative neural networks. The values represent the performance scores, 

with failure reasons noted in brackets. Specifically, 1: code error and execution error; 2: 

exceeded runtime limit; 3: code error but successful execution; 4: right code but execution 

error due to other issues; 5: right code and successful execution. 

 
PM NCM FPNENN 

GPT-4-Advanced Data Analysis (OpenAI, 2023)  0.80 (4) 0 (1) 0 (1) 

ChatGLM-Data Analysis (Du et al., 2022)  0 (2) 0 (2) 0 (2) 

OpenInterpreter (Interpreter, 2023)  0 (2) 0 (2) 0 (2) 

OpenCodeInterpreter (Zheng et al., 2024a)  1.00 (5) 0 (1) 0 (1) 

Chapyter (Chapyter, 2023)  0 (2) 0 (2) 0 (2) 

DataInterpreter (Tools) (Hong et al., 2024)  1.00 (5)  1.00 (5)  1.00 (5)  

TaskWeaver (Plugins) (Qiao et al., 2023)  1.00 (5)  1.00 (5)  1.00 (5)  

LAMBDA (Knowledge)  1.00 (5)  1.00 (5)  1.00 (5)  

 

Table 9: The results of case study on Misalignment between Tools and Instructions. Both 

Plugins and Tools Integration directly use the tools and are not aware of the Misalignment 

between Tools and Instructions. 

Methods Misalignment Loss Misalignment Network 

TaskWeaver (Plugins) ✗ Directly using the plugin ✗ Directly using the plugin 

Data Interpreter (Tools) ✗ Directly use the tool ✗ Directly use the tool 

LAMBDA (Knowledge) 
 Alignment  Alignment 
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