
Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: www.tandfonline.com/journals/uasa20

LAMBDA: A Large Model Based Data Agent

Sun Maojun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng
Yuan & Jian Huang

To cite this article: Sun Maojun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng
Yuan & Jian Huang (02 Jun 2025): LAMBDA: A Large Model Based Data Agent, Journal of the
American Statistical Association, DOI: 10.1080/01621459.2025.2510000

To link to this article: https://doi.org/10.1080/01621459.2025.2510000

View supplementary material

Accepted author version posted online: 02
Jun 2025.

Submit your article to this journal

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

https://www.tandfonline.com/journals/uasa20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2025.2510000
https://doi.org/10.1080/01621459.2025.2510000
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2025.2510000
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2025.2510000
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2025.2510000?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2025.2510000?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2025.2510000&domain=pdf&date_stamp=02%20Jun%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2025.2510000&domain=pdf&date_stamp=02%20Jun%202025
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

LAMBDA: A Large Model Based Data Agent

Maojun Sun
b
, Ruijian Han

b
, Binyan Jiang

b
, Houduo Qi

a,b
, Defeng Sun

a
, Yancheng Yuan

a,*

and Jian Huang
a,b,*

a
Department of Applied Mathematics, The Hong Kong Polytechnic University

b
Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic

University

*Corresponding authors: j.huang@polyu.edu.hk, yancheng.yuan@polyu.edu.hk

Abstract

We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free

multi-agent data analysis system that leverages the power of large language models.

LAMBDA is designed to address data analysis challenges in data-driven applications through

innovatively designed data agents using natural language. At the core of LAMBDA are two

key agent roles: the programmer and the inspector, which are engineered to work together

seamlessly. Specifically, the programmer generates code based on the user’s instructions and

domain-specific knowledge, while the inspector debugs the code when necessary. To ensure

robustness and handle adverse scenarios, LAMBDA features a user interface that allows

direct user intervention. Moreover, LAMBDA can flexibly integrate external models and

algorithms through our proposed Knowledge Integration Mechanism, catering to the needs of

customized data analysis. LAMBDA has demonstrated strong performance on various data

analysis tasks. It has the potential to enhance data analysis paradigms by seamlessly

integrating human and artificial intelligence, making it more accessible, effective, and

efficient for users from diverse backgrounds. The strong performance of LAMBDA in

solving data analysis problems is demonstrated using real-world data examples. The code for

LAMBDA is available at https://github.com/AMA-CMFAI/LAMBDA and videos of three

case studies can be viewed at https://www.polyu.edu.hk/ama/cmfai/lambda.html.

Acc
ep

te
d

M
an

us
cr

ipt

mailto:j.huang@polyu.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2025.2510000&domain=pdf

Keywords: Code generation via natural language; Data analysis; Large models; Multi-agent

collaboration; Software system.

1 Introduction

Over the past decade, the data-driven approach utilizing deep neural networks has driven the

success of artificial intelligence across many challenging applications in various fields

(LeCun et al., 2015). Despite these advancements, the current paradigm encounters

challenges and limitations in statistical and data science applications, particularly in domains

such as biology (Weissgerber et al., 2016), healthcare (Oakes et al., 2024), and business

(Weihs and Ickstadt, 2018), which require extensive expertise and advanced coding

knowledge for data analysis. A significant barrier is the lack of effective communication

channels between domain experts and sophisticated AI models (Park et al., 2021). To address

this issue, we introduce a Large Model Based Data Agent (LAMBDA), which is a new open-

source, code-free multi-agent data analysis system designed to overcome this dilemma.

LAMBDA aims to create a much-needed medium, fostering seamless interaction between

domain knowledge and the capabilities of AI in statistics and data science.

Our main objectives in developing LAMBDA are as follows.

(a) Crossing coding barrier: Coding has long been recognized as a significant barrier for

domain experts without a background in statistics or computer science, preventing them from

effectively leveraging powerful AI tools for data analysis (Oakes et al., 2024). LAMBDA

addresses this challenge by enabling users to interact with data agents through natural

language instructions, thereby offering a coding-free experience. This approach significantly

lowers the barriers to entry for tasks in data science, such as data analysis and data mining,

while simultaneously enhancing efficiency and making these tasks more accessible to

professionals across various disciplines.

(b) Integrating human intelligence and AI: The existing paradigm of data analysis is

confronted with a challenge due to the lack of an efficient intermediary that connects human

intelligence with artificial intelligence (Park et al., 2021). On one hand, AI models often lack

an understanding of the unlearned domain knowledge required for specific tasks. On the other

hand, domain experts find it challenging to integrate their expertise into AI models to

enhance their performance (Dash et al., 2022). LAMBDA provides a possible solution to

alleviate this problem. With a well-designed interface in our key-value (KV) knowledge base,

the agents can access external resources like algorithms or models. This integration ensures

that domain-specific knowledge is effectively incorporated, meets the need for customized

data analysis, and enhances the agent’s ability to perform complex tasks with higher accuracy

and relevance.

(c) Reshaping data science education: LAMBDA has the potential to become an interactive

platform that can transform statistical and data science education. It offers educators the

flexibility to tailor their teaching plans and seamlessly integrate the latest research findings.

This adaptability makes LAMBDA an invaluable tool for educators seeking to provide

cutting-edge, personalized learning experiences. Such an approach stands in contrast to the

direct application of models like GPT-4 (OpenAI, 2023; Tu et al., 2024), offering a unique

and innovative educational platform.

Acc
ep

te
d

M
an

us
cr

ipt

Beyond these features, the design of LAMBDA also emphasizes reliability and portability.

Reliability refers to LAMBDA’s ability to handle data analysis tasks stably and automatically

address failures. Portability ensures that LAMBDA is compatible with various large language

models (LLMs), allowing it to be continuously enhanced by the latest state-of-the-art models.

To save users time on tasks such as document writing, LAMBDA is equipped with the

capability for automatic analysis report generation. To accommodate diverse user needs,

LAMBDA also supports exporting code to IPython notebook files, such as “ipynb” files in

Jupyter Notebook.

While GPT-4 has demonstrated state-of-the-art performance in advanced data analysis, its

closed-source nature constrains its adaptability to the rapidly expanding needs of statistical

and data science applications and specialized educational fields. Furthermore, concerns

regarding data privacy and security risks are inherent in the present configuration of GPT-4

(Bavli et al., 2024). In contrast, by utilizing the open-source LAMBDA, users can alleviate

concerns about data privacy by preventing the transmission of user data to external servers.

Additionally, it offers greater flexibility and convenience in integrating domain knowledge,

installing packages, and utilizing various computational resources.

LAMBDA demonstrates exceptional performance across various datasets used in our system

testing. Moreover, it outperforms other data agents in handling complex domain tasks during

our experiments. In summary, our main contributions are as follows: We propose a well-

engineered architecture for an LLM-based data agent that enables natural language-driven

data analysis in a conversational manner. Unlike typical end-to-end data agents, our design

allows human intervention throughout the process, ensuring adaptability when the agent fails

to complete a task or misinterprets user intent. Moreover, we introduce a Knowledge

Integration mechanism to effectively handle tasks requiring domain-specific knowledge,

providing greater flexibility when misalignment occurs in the knowledge. Its ongoing

development has the potential to enhance statistics and data science, making advanced tools

more accessible to diverse users.

This paper begins with the background and related works in Section 2. Section 3 provides a

detailed description of the proposed LAMBDA method. To evaluate its effectiveness, we

present our experiments and results in Section 4. Section 5 demonstrates examples and cases

of LAMBDA’s application in various scenarios, including data analysis, integration of human

intelligence, and interactive education. The paper concludes with a summary in Section 6.

More information and details, including implementation, some discussions, datasets, case

studies, and experimental settings, are provided in the Supplementary Materials.

2 Background and related works

In recent years, the rapid progress in LLMs like GPT-3, GPT-4, PaLM, LLaMA, and Qwen

(Brown et al., 2020; OpenAI, 2023; Chowdhery et al., 2022; Touvron et al., 2023; Bai et al.,

2023) has brought boundless possibilities to the field of artificial intelligence and its

applications in many fields, including statistics and data science. Benefiting from this

revolution, LLM-powered agents (LLM agents) are developed to automatically solve

problems in various domains like the search engine, software engineering, gaming, and data

science (Guo et al., 2024; Hong et al., 2023; Wu et al., 2023; Zhou et al., 2023; Hong et al.,

2023).

Acc
ep

te
d

M
an

us
cr

ipt

Acc
ep

te
d

M
an

us
cr

ipt

2.1 LLMs as data analysis agents

LLM-based data science agent, or data agent, is dedicated to harnessing the power of LLMs

to automate data science and analysis tasks (Sun et al., 2024). For example, GPT-4-Advanced

Data Analysis and ChatGLM-Data Analysis can analyze user’s data files, perform

computations, and generate visualizations (OpenAI, 2023). Some works integrate LLMs into

Jupyter Notebooks. For instance, MLCopilot (Zhang et al., 2023) and Chapter (Chapyter,

2023), enable users to interact directly with the notebook, greatly enhancing flexibility.

However, they cannot automatically fix errors when they occur and require additional magic

commands to support natural language input.

Meanwhile, some researchers focus on designing end-to-end data agents to automate the

entire pipeline, including data preprocessing and model evaluation, without human

intervention. For example, Data Interpreter (Hong et al., 2024) and TaskWeaver (Qiao et al.,

2023) accomplish their tasks through planning and iterative steps. However, current state-of-

the-art LLM/VLM-based agents do not reliably automate complete data science workflows

(Cao et al., 2024). While fully relying on LLMs for each step reduces human effort, it also

significantly increases instability and uncertainty. In addition, if any intermediate step does

not align with the user’s intent, the process must be repeated, potentially leading to token

waste. In contrast, LAMBDA is designed to support a human-agent collaboration mode,

allowing for human intervention at any stage of the process if necessary.

Furthermore, these works have not adequately addressed the high degree of user flexibility

needed in data analysis, such as the integration of custom algorithms or statistical models

according to user preferences. This flexibility is crucial for enhancing data analysis tasks in

domain-specific applications and in statistical and data science education. To address this

gap, we have designed a Knowledge Integration Mechanism that allows for the easy

incorporation of user resources into our agent system.

2.2 Multi-agent collaboration

A multi-agent system consists of numerous autonomous agents that collaboratively engage in

planning, discussions, and decision-making, mirroring the cooperative nature of human group

work in problem-solving tasks (Guo et al., 2024). Each agent has unique capabilities,

objectives, and perceptions, operating either independently or collectively to tackle complex

tasks or resolve problems (Huang et al., 2023a). Hong et al. (2023) proposed MetaGPT,

modeled after a software company, consisting of agents such as Product Manager, Architect,

Project Manager, Engineer, and QA Engineer, efficiently breaking down complex tasks into

subtasks involving many agents working together. However, even for simple tasks like data

visualization, MetaGPT consume a large number of tokens and require more time. In

addition, they generate engineering files that need manual execution and lack the immediacy

and interactivity essential for intuitive data analysis. In contrast, LAMBDA simplifies the

collaboration process by involving only two agents to simulates data analysis workflows,

programmer and inspector respectively, reducing token and time consumption. Moreover, its

well-designed user interface allows users to intuitively view the analysis results directly on

the screen. A comparison and discussion can be found in the supplement materials.

Acc
ep

te
d

M
an

us
cr

ipt

2.3 Knowledge integration

Addressing tasks that require domain-specific knowledge presents a significant challenge for

AI agents (Zhang et al., 2024). Incorporating knowledge into LLMs through in-context

learning (ICL) is a promising strategy for acquiring new information. A well-known

technique in this regard is retrieval-augmented generation (RAG) (Gao et al., 2023), which

enhances the accuracy and reduces hallucinations of LLM answers by retrieving external

sources (Lewis et al., 2020; Huang et al., 2023b; Borgeaud et al., 2022; Mialon et al., 2023).

In RAG, resources are divided into sub-fragments, embedded into vectors, and stored in a

vector database. The model first queries this database, identifying document fragments

relevant to the user’s query based on the similarity. These fragments are then utilized to

refine the answers generated by the LLMs through ICL (Lewis et al., 2020). However,

deploying a general RAG approach in data analysis introduces specific challenges. First, the

user’s instructions may not align closely with the relevant code fragments in the

representation space, resulting in inaccurate searches. Second, when dealing with extensive

code, the agents might struggle to contextualize the correct code segments, where accuracy

and completeness are essential for codes and final results.

In addition, custom APIs (Hong et al., 2024) can be implemented to handle domain-specific

tasks (Qiao et al., 2023; Hong et al., 2024). For example, systems like Data Interpreter and

TaskWeaver invoke the corresponding Tools/Plugins directly within the generated code.

Compared to direct parameter-passing, this approach offers greater flexibility in tool usage.

However, since the agent cannot access the implementation details of these plugins, it is

limited to simple plugin usage and may struggle to resolve misalignment between tools and

human instructions when plugin usage is inappropriate.

To address these challenges, we develop a specially designed KV knowledge base with

integration methods. This allows users to choose between different modes, including ‘Full’

and ‘Core’, based on the complexity, length of the knowledge context, and specific task

requirements. By integrating knowledge, our agent system becomes more adaptable to

domain-specific tasks, leveraging human expertise more effectively.

3 Methodology

Our proposed multi-agent data analysis system, LAMBDA, consists of two agents that

cooperate seamlessly to solve data analysis tasks using natural language, as shown in Figure

1. The macro workflow describes the code generation process based on user instructions and

subsequently executing that code.

3.1 Overview

LAMBDA is structured around two core agent roles: the “programmer” and the “inspector,”

who are tasked with code generation and error evaluation, respectively. The two agents can

be implemented separately using either the same or different LLMs. When users submit an

instruction, the programmer agent writes code based on the provided instruction and dataset.

This code is then executed within the kernel of the host system. Should any errors arise

during execution, the inspector intervenes, offering suggestions for code refinement. The

programmer takes these suggestions into account, revises the code, and resubmits it for re-

evaluation. This iterative cycle continues until the code runs error-free or a preset maximum

Acc
ep

te
d

M
an

us
cr

ipt

number of attempts is reached. In order to cope with adverse situations and enhance its

reliability and flexibility, a human intervention mechanism is integrated into the workflow.

This feature allows users to modify and run the code directly and intervene when necessary.

The multi-agent collaboration algorithm is demonstrated in Algorithm 1.

Algorithm 1 Multi-agent Collaboration. nA , nC are the answer and extracted code by the

programmer agent in iteration n. We assume each nA contains nC , otherwise, the programmer’s

reply will be returned to the user directly. r is the execution result, E indicates an error, nS are

suggestions provided by the inspector in iteration n, hC is the code written by a human. The final

response is denoted as R.

Require: Pr: Programmer agent

Require: I: Inspector agent

Require: d: Dataset provided by user

Require: ins: Instructions provided by user

Require: T: Maximum number of attempts

1: 0n Initialize iteration counter

2: n nC A , (,)nA Pr d ins Extract code and answer by Programmer

3:
, success

execute()
, error

n

r
r C

E


 


 Code execution, similarly to subsequent r

4: while r E and n T do Self-correcting mechanism start

5: 1n n 

6: 1(,)n nS I C E Inspector provides suggestions

7: 1, (, ,)n n n n nC A A Pr C S E  Programmer modifies code

8: execute()nr C Execute modified code

9: end while

10: if r E then

11: execute()hr C Human intervention (Optional)

12: ()hR C Pr r  Final response in natural language

13: end if

14: ()nR C Pr r  Final response in natural language

Acc
ep

te
d

M
an

us
cr

ipt

3.2 Programmer agent

The main responsibility of the programmer is to write code and respond to the user. Upon the

user’s dataset upload, the programmer receives a tailored system prompt that outlines the

programmer’s role, environmental context, and the I/O formats. This prompt is augmented

with examples to facilitate few-shot learning for the programmer. Specifically, the system

prompt encompasses the user’s working directory, the storage path of the dataset, the

dimensions of the dataset, the name of each column, the type of each column, information on

missing values, and statistical description.

The programmer’s workflow can be summarized as follows: initially, the programmer writes

code based on instructions from the user or the inspector; subsequently, the program extracts

code blocks from the programmer’s output and executes them in the kernel. Finally, the

programmer generates a final response based on the execution results and communicates it to

the user. This final response consists of a summary and suggestions for the next steps.

3.3 Inspector agent and self-correcting mechanism

The inspector’s role is to provide modification suggestions when errors occur in code

execution. The prompt of the inspector includes the code written by the programmer during

the current dialogue round and the error messages from the kernel. The inspector will offer

actionable revision suggestions to the programmer for code correction. This suggestion

prompt contains the erroneous code, kernel error messages, and the inspector’s suggestions.

This collaborative process between the two agents iterates several rounds until the code

executes successfully or the maximum number of attempts is reached. This self-correcting

mechanism enables the programmer and inspector to make multiple attempts in case of error.

A case of self-correcting mechanism and released experiment can be found in the

Supplementary Materials.

3.4 Integrating human intelligence and AI

Beyond leveraging the inherent knowledge of LLMs, LAMBDA is further enhanced to

integrate human intelligence through external resources such as customized algorithms and

statistical models from users. As mentioned above, the challenges faced by general RAG

methods in data analysis stem from the potential lack of clear correlation between user

instructions and code fragments in the representation space, as well as the impact of the

length of code fragments. We design a special KV knowledge base for this challenge.

The KV knowledge base is a repository for housing external resources from users in key and

value pairs. Specifically, we format the code of resources into key-value pairs: the key

represents the resource description, and the value denotes the code. The user’s query will be

matched within the knowledge base to select the code with the highest similarity. Figure 2

demonstrates the workflow of knowledge matching in LAMBDA. We define the knowledge

base as {(,) 1,2, , },i id c i n  ∣ where id represents the description of the i-th piece of

knowledge and ic represents the corresponding source code.

When the user issues an instruction ins, an embedding model encodes all descriptions in

the knowledge base and the ins, such as Sentence-BERT (Reimers and Gurevych, 2019). The

Acc
ep

te
d

M
an

us
cr

ipt

embedding tensors for descriptions and instruction are represented by
ide and inse

respectively. The cosine similarity between them is calculated to select knowledge with a

similarity score greater than a threshold  , with the highest-scoring match chosen as the

relevant knowledge.

Let the embedding function be , the
ide and inse are formulated as follows

(), {1,2, , },
id id i n  e and ().ins inse The similarity iS between description and

instruction is computed using cosine similarity as

·
(,) {1,2, , }.i

i

i

d ins

i d ins

d ins

S i n   
e e

e e
e e‖ ‖‖ ‖

The matched knowledge k with the highest iS is selected while it satisfies iS  , computed

as

 *

*

{ (,) }, arg max (,)· {1,2, , }.
i i d insi

i d ins Si i
k c i S i n    e ee e 1

The knowledge k will be embedded in ICL for the LLM to generate answer Â . Formally,

given a query q, matched knowledge k, a set of demonstrations

1 1 1 2 2 2{(, ,), (, ,), , (, ,)} n n nD q k a q k a q k a  , and the LLM , the model estimates the

probability (| , ,)a q k D and outputs the answer Â that maximizes this probability. The final

response Â is generated by the model as ˆ (,).A q D

The matching threshold  defines the required similarity between a knowledge description

and a user instruction, directly influencing the complexity of retrieving relevant knowledge.

A higher  imposes stricter matching criteria, reducing the chance of retrieval, whereas a

lower  increases the probability of identifying a match.

The optimal selection of  depends on multiple factors. For example, when users aim to

incorporate specific knowledge into a task, a lower  value increases the chance of retrieving

the relevant information. Furthermore, the length of the knowledge description plays a critical

role, as longer descriptions typically necessitate a lower  value since user instructions are

generally more concise. By default, we recommend setting  to 0.2. However, this value can

be adjusted based on the aforementioned factors to optimize retrieval performance.

By integrating k through ICL, the model effectively combines retrieved domain knowledge

with contextual learning to provide answers that are more accurate. Moreover, LAMBDA

offers two integration modes: ‘Full’ and ‘Core’. In the ‘Full’ mode, the entire knowledge is

utilized as the context in ICL. In the ‘Core’ mode, the core functions are processed through

ICL, while other functions are executed directly in the back-end. This approach allows the

agents to focus on modifying the core function directly, without the need to understand or

implement the sub-functions within it. The ‘Core’ mode is particularly effective for scenarios

involving lengthy code, as it eliminates the need to process the entire code through ICL.

These two modes of knowledge integration provide substantial flexibility for handling tasks

Acc
ep

te
d

M
an

us
cr

ipt

that require domain-specific knowledge. We evaluate our Knowledge Integration Mechanism

in Table 8 through several domain tasks.

In summary, the Knowledge Integration Mechanism empowers LAMBDA to perform

domain tasks and offers the flexibility needed to address complex data analysis challenges.

3.5 Kernel, report generation and code exporting

LAMBDA uses IPython as its kernel to manage sequential data processing, where each

operation builds on the previous one, such as standardization followed by one-hot encoding.

Implementation details are in the Supplementary Materials. LAMBDA also generates

analysis reports from dialogue history, including data processing steps, visualizations, model

descriptions, and evaluation results. Users can choose from various report templates, and the

agent creates reports via ICL, allowing users to focus on higher-value tasks. A sample report

is in Figure 9 and the Supplementary Materials. Moreover, users can download their

experimental code as an IPython notebook.

3.6 User interface

LAMBDA provides an accessible user experience similar to ChatGPT. Users can upload

datasets and describe tasks in natural language, supported by LLMs like Qwen-2, which

recognizes 27 languages. It is recommended to prompt LAMBDA step-by-step, mimicking

data analysts’ approach, to maintain control and embody the “human-in-the-loop” concept.

LAMBDA generates results, including code, figures, and models, which users can copy and

save with a single click. Even those without expertise in statistics or data science can train

advanced models by simply asking for recommendations, such as XGBoost and AdaBoost.

Advanced users can customize LAMBDA’s knowledge via an interface template. Users can

also export text reports and code for further study. A usage example is shown in Figure 9.

LAMBDA’s interface is designed to be accessible to users of all backgrounds.

To summarize, the programmer agent, inspector agent, self-correcting mechanism, and

human-in-the-loop components collectively ensure the reliability of LAMBDA. The

integration of knowledge makes LAMBDA scalable and flexible for domain-specific tasks.

To enhance portability, we provide an OpenAI-style interface for LAMBDA. This ensures

that most LLMs, once deployed via open-source frameworks such as vLLM (Kwon et al.,

2023) and LLaMA-Factory (Zheng et al., 2024b), are compatible with LAMBDA.

3.7 Prompt

We present examples of prompts for the roles of programmer, inspector, self-corrector, and

knowledge integrator. Additional prompt examples and case studies are available in the

Supplementary Materials.

Figure 3 gives an example prompt for the data analyst at the start of the analysis session.

Figure 4 shows a system prompt about the dataset, which provides essential information to

the programmer agent.

Acc
ep

te
d

M
an

us
cr

ipt

After obtaining the execution results, a prompt such as the one given in Figure 5 can be used

to format the output, enabling the programmer agent to provide an explanation or suggest the

next steps.

When an error occurs, a prompt for the inspector is employed to guide the inspector in

identifying the cause of the bug and to offer revision suggestions (Figure 6).

Figure 7 presents an example prompt for the programmer revising the error code.

For knowledge integration, the system message prompt and retrieval result are shown in

Figure 8.

4 Experiments

4.1 Data experiments

The current data analysis paradigm relies on programming software and languages such as R

(R Core Team, 2023), SAS (SAS Institute Inc., 2015), and Python (Python Software

Foundation, 2023) for computation and experimentation. To gain practical experience and

evaluate LAMBDA’s performance in real-world data science tasks, we first applied

LAMBDA to several standard datasets for classification and regression analysis. In addition,

we conducted further investigations in broader statistical analysis scenarios, such as high-

dimensional data, missing data, image data, and text data, to examined its robustness and

versatility. All information of the datasets used can be found in the supplementary materials.

For classification problems, we measured accuracy on the test data, defined as the ratio of

correctly classified instances to the total number of instances. For regression problems, we

used Mean Squared Error (MSE), which is the average of the squared differences between the

predicted values and the actual values in the test data. The formula for MSE is:

2

1

ˆMSE (1/) () ,
n

i i

i

n y y


  where n is number of data points, iy is the observed value, ˆ
iy is

the predicted value. We employed 5-fold cross validation for evaluation in all the cases.

Table 1 lists the datasets used in our experiments and case studies.

4.1.1 Experiments with classical tabular data

We initially applied LAMBDA to several classical datasets, covering both classification and

regression tasks. To facilitate comparison, we documented the analysis methods employed by

LAMBDA and then manually conducted the same analyses using R. The results are

summarized in Table 2, with the corresponding results from the R analyses presented in

parentheses.

The results presented in Table 2 demonstrate LAMBDA’s robust performance in executing

data analysis tasks. These results are either superior to or on par with those obtained using R.

These outcomes highlight LAMBDA’s effectiveness in leveraging various models across

tabular data scenarios. Furthermore, the results indicate that LAMBDA performs at a level

comparable to that of a data analyst proficient in R. This suggests the potential for systems

like LAMBDA to become indispensable tools for data analysis in the future. Notably, there

Acc
ep

te
d

M
an

us
cr

ipt

was no human involvement in the entire experimental process with LAMBDA, as only

prompts in English were provided.

In summary, the experimental results demonstrate that LAMBDA achieves human-level

performance and can serve as an efficient and reliable data agent, assisting individuals in

handling data analysis tasks.

4.1.2 Experiments with high-dimensional data and unstructured data

To validate LAMBDA’s robustness and versatility, we further explored its application across

a broader range of data scenarios, including high-dimensional data, missing data, image data,

and text data.

• High-dimensional data: We evaluated LAMBDA on the following three challenging

high-dimensional clinical datasets: TCGAmirna (Bentink et al., 2012), EMTAB386

(Colaprico et al., 2015), and GSE49997 (Pils et al., 2012).

We summarize the sample size and dimensions in Table 3. The test results are presented in

Table 4. More detailed descriptions of these three datasets are given in the Supplementary

Materials. We found that LAMBDA consistently applies dimensionality reduction

techniques, such as Principal Component Analysis (PCA), as a preprocessing step. This

allows us to apply methods like logistic regression without the regularization. The results

indicate that LAMBDA is capable of handling high-dimensional data.

• Missing data: We evaluated LAMBDA on three datasets containing missing values, with

results summarized in Table 5. We observe that LAMBDA tends to prioritize deleting the

observations that contain missing values. However, with an appropriate prompt, LAMBDA

can also attempt to impute missing values (e.g., mean value). When errors arise due to

missing values, the Inspector agent effectively identifies the issue, notifies the Programmer

agent, and applies the necessary corrections.

• Image data: We used LAMBDA to train a handwritten digit classifier based on the

MNIST dataset. We prompted LAMBDA to utilize various neural network architectures,

such as Convolutional Neural Networks (CNNs) and Transformers, as backbone models. The

results of this experiment are presented in Table 6. According to Table 6, we find LAMBDA

can effectively implement and apply deep learning architectures like CNNs and Transformers

for image classification tasks.

• Text data: We used LAMBDA to train a spam detection classifier based on the SMS Spam

Collection Dataset. Similar to our approach with image data, we prompted LAMBDA to

experiment with different backbone models for this task. The results are summarized in Table

7. As shown in Table 7, LAMBDA successfully performed text classification tasks. Notably,

when prompted to use a Transformer-based architecture, LAMBDA employed DistilBERT-

Base-Uncased for transfer learning, which significantly improved both training efficiency and

model performance.

Overall, our findings indicate that LAMBDA is not only capable of handling tabular tabular

tasks but also effectively processing image and text data. In future work, we aim to explore

more complex and diverse data scenarios.

Acc
ep

te
d

M
an

us
cr

ipt

4.2 Performance of Knowledge Integration

We collected three domain-specific tasks to evaluate the proposed Knowledge Integration

Mechanism and compare it with advanced data analysis agents. Specifically, the tasks involve

utilizing the recent algorithm packages (e.g., PAMI (Piotrowski et al., 2021)), implementing

optimization algorithms (e.g., computing the nearest correlation matrix), and training the

latest research models (e.g., non-negative neural networks). For each task, we define a score

 that is calculated as follows:

0, code error and execution error, or exceeded runtime limit,

0.5, code error and execution successful,

0.8, code successful, execution error due to other issues, e .g. environment,

1, both code and execut



ion successful.








To ensure maximum alignment in experimental settings, we converted the code into

corresponding tools for agents equipped with a tools mechanism. For agents lacking such a

mechanism, we directly included the code in their context. All agents are implemented using

GPT-3.5, except for methods and platforms that have their own models, such as GPT-4-

Advanced Data Analysis, ChatGLM-Data Analysis, and OpenCodeInterpreter. Since each

task can be completed within one minute, we set a maximum runtime limit of 5 minutes to

prevent some agents from becoming stuck in infinite self-modification loops.

• Pattern Mining Piotrowski et al. (2021) introduce PAMI (PAttern MIning), a cross-

platform, open-source Python library offering algorithms to uncover patterns in diverse

databases across multiple computing architectures.

• Nearest Correlation Matrix Qi and Sun (2006) propose a Newton-type method specifically

designed for the nearest correlation matrix problem. Numerical experiments validate the

method’s fast convergence and high efficiency.

• Fixed Points Non-negative Neural Networks Rage et al. (2024) analyze nonnegative neural

networks, which are defined as neural networks that map nonnegative vectors to nonnegative

vectors.

Table 8 demonstrates the effectiveness of LAMBDA’s Knowledge Integration mechanism.

Specifically, our results showed that many methods scored zero, particularly when the code

was lengthy or involved unfamiliar packages not encountered during LLM training. In these

situations, most other approaches struggle with one-shot learning. Two exceptions are Data

Interpreter and TaskWeaver, which successfully complete the task using pre-defined

Plugins/Tools. With the pre-defined Plugins/Tools, they can execute operations internally

without requiring the LLM to generate precise code. This mechanism is similar to the ‘Core’

mode of our LAMBDA.

With these tools, the LLM only needs to learn a given code usage example rather than

generating the full internal implementation, even when it has access to those details.

Although these approaches are generally suitable, the agent is likely to make mistakes when

there is the certain misalignment between the users’ instructions and integrated knowledge. In

Acc
ep

te
d

M
an

us
cr

ipt

such circumstances, we need to utilize the ‘Full’ mode of our LAMBDA. To further support

our claim, we designed two additional experiments.

We take the fixed point non-negative neural networks as a example. We further explore the

following two cases that involve misalignment in integrating knowledge/tools and human

instruction, which require modifications to the tools (the loss and network mapping are

annotated in the schema):

• Case 1: The instruction specifies the use of L1 Loss, whereas the tool are originally

configured with MSE Loss.

• Case 2: The instruction specifies a network structure mapping as follows:

– Encoder: 784 400 , whereas 784 200 originally configured.

– Decoder: 400 784 , whereas 200 784 originally configured.

From Table 9, we observe that in Cases 1 and 2, which require modifications to the tools,

both TaskWeaver and Data Interpreter directly use the original tools without recognizing that

the tools no longer meet the new requirements although the loss and network mapping are

annotated in the schema. In contrast, due to the visibility of the knowledge code under ‘Full’

mode, LAMBDA identifies that the original code cannot satisfy the new requirements, makes

the necessary adjustments, and successfully completes the two cases.

5 Examples

We present an example of using LAMBDA for building a classification model in Figure 9.

We also provide three case studies in video format to demonstrate the use of LAMBDA in

data analysis, integrating human intelligence and AI, and education.

• Data Analysis We simulate scenarios in which the user requests LAMBDA to perform

various tasks, including data preprocessing, data visualization, and model training, on the

provided Iris dataset (Fisher, 1988). LAMBDA consistently delivers accurate responses.

Additionally, LAMBDA generates an analysis report based on the chat history. A

demonstration of this process is given in the first video at

https://www.polyu.edu.hk/ama/cmfai/lambda.html.

• Integrating Human Intelligence and AI We demonstrated the Knowledge Integration

capabilities of LAMBDA by computing the nearest correlation matrix using the Quadratically

Convergent Newton Method. We first highlighted the limitations of GPT-4-Advanced Data

Analysis in performing this task, thereby underscoring the value of LAMBDA through

comparison. A demonstration is given in the second video at

https://www.polyu.edu.hk/ama/cmfai/lambda.html.

• Interactive Education We consider an educational scenario in which the teacher uses

LAMBDA to design the exercise assignments, and the students use LAMBDA to complete

exercises. The exercise dataset used is Abalone. This educational support system enhances

the efficiency of both teaching and learning. A demonstration is given in the third video at

https://www.polyu.edu.hk/ama/cmfai/lambda.html.

Acc
ep

te
d

M
an

us
cr

ipt

6 Conclusion

LAMBDA is an open-source multi-agent data analysis system that effectively integrates

human intelligence with artificial intelligence. Experimental results demonstrate that

LAMBDA achieves satisfactory performance in handling various data analysis tasks. In the

future, LAMBDA can be further enhanced with advanced planning, reasoning techniques,

and knowledge integration methods to address a broader range of domain-specific tasks. Our

results and examples underscore the significant potential of LAMBDA to enhance both

statistical and data science practice and education.

By bridging the gap between human expertise and AI capabilities, LAMBDA aims to

democratize data science and statistical analysis, fostering a more inclusive environment for

innovation and discovery. Its open-source nature encourages collaboration and continuous

improvement from the global research community, allowing researchers and developers to

contribute to its evolution. As LAMBDA continues to develop, it has the potential to become

an invaluable tool for statisticians, data scientists, and domain experts, enhancing their ability

to analyze data efficiently and effectively.

Moreover, LAMBDA holds significant potential for statistical and data science education. Its

natural language interface lowers barriers for educators and students, enabling them to focus

on problem formulation rather than getting bogged down by syntactic complexities. By

generating executable code for various tasks, LAMBDA provides immediate, actionable

feedback, which can enhance the learning experience by allowing students to see the direct

impact of their queries and hypotheses. This capability not only aids in teaching fundamental

concepts but also empowers students to experiment and explore data-driven insights

independently.

Future work on LAMBDA could focus on several key areas. First, enhancing LAMBDA’s

ability to seamlessly integrate and leverage large models from various domains for statistical

analysis could significantly improve its capacity to tackle complex data analysis tasks.

Second, improving the user interface and increasing user satisfaction would make the system

more accessible to non-experts. Third, incorporating real-time data processing capabilities

could enable LAMBDA to handle streaming data, which is increasingly important in many

applications. Finally, expanding the system’s support for collaborative work among multiple

users could further enhance its utility in both educational and professional settings. We plan

to implement LAMBDA in our classroom teaching scenarios, continuously gather feedback

from various groups, and use user satisfaction as a metric for evaluating LAMBDA.

In conclusion, LAMBDA represents a meaningful step forward in integrating human and

artificial intelligence for data analysis. Its continued development and refinement have the

potential to advance the fields of statistics and data science, making sophisticated analytical

tools more accessible to users from diverse backgrounds. We have made our code available at

https://github.com/AMA-CMFAI/LAMBDA.

Acknowledgments

The authors are grateful to the Editor, Associate Editor, three anonymous reviewers, and the

reproducibility reviewer for their valuable comments and suggestions, which significantly

improved the quality of the paper.

Acc
ep

te
d

M
an

us
cr

ipt

Funding

This work was funded by the Centre for the Mathematical Foundations of Generative AI and

the research grants from The Hong Kong Polytechnic University (P0046811). The research of

Ruijian Han was partially supported by The Hong Kong Polytechnic University (P0044617,

P0045351, P0050935). The research of Houduo Qi was partially supported by the Hong

Kong RGC grant (15309223) and The Hong Kong Polytechnic University (P0045347). The

research of Defeng Sun and Yancheng Yuan was partially supported by the Research Center

for Intelligent Operations Research at The Hong Kong Polytechnic University (P0051214).

The research of Jian Huang was partially supported by The Hong Kong Polytechnic

University (P0042888, P0045417, P0045931).

Disclosure Statement

The authors report there are no competing interests to declare.

References

Aeberhard, S. and Forina, M. (1991). The Wine dataset. UCI Machine Learning Repository.

DOI: https://doi.org/10.24432/C5PC7J.

Almeida, T. A., Hidalgo, J. M. G., and Yamakami, A. (2011). Contributions to the study of

sms spam filtering: New collection and results.

https://www.dt.fee.unicamp.br/∼tiago/smsspamcollection/.

Anh, P. (2023). Three high-dimensional genomic datasets.

https://www.kaggle.com/datasets/anhpknu/high-dimensional-data/data.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., et al. (2023). Qwen technical report.

arXiv preprint arXiv:2309.16609.

Bavli, I., Ho, A., Mahal, R., and McKeown, M. J. (2024). Ethical concerns around privacy

and data security in ai health monitoring for parkinson’s disease: Insights from patients,

family members, and healthcare professionals. AI & SOCIETY, pages 1–11.

Bentink, S., Haibe-Kains, B., Risch, T., Fan, J. B., Hirsch, M. S., Holton, K., Rubio, R.,

April, C., Chen, J., Wang, J., Lu, Y., Wickham-Garcia, E., Liu, J., Culhane, A. C., Drapkin,

R., Quackenbush, J., and Birrer, M. J. (2012). Angiogenic mrna and microrna gene

expression signature predicts a novel subtype of serous ovarian cancer. PloS One,

7(2):e30269.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., et al. (2022).

Improving language models by retrieving from trillions of tokens. arXiv preprint

arXiv:2112.04426.

Brooks, T., Pope, D., and Marcolini, M. (2014). Airfoil Self-Noise. UCI Machine Learning

Repository. DOI: https://doi.org/10.24432/C5VW2C.

Acc
ep

te
d

M
an

us
cr

ipt

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020).

Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Cao, R., Lei, F., Wu, H., Chen, J., Fu, Y., Gao, H., Xiong, X., Zhang, H., Hu, W., Mao, Y.,

Xie, T., Xu, H., Zhang, D., Wang, S., Sun, R., Yin, P., Xiong, C., Ni, A., Liu, Q., Zhong, V.,

Chen, L., Yu, K., and Yu, T. (2024). Spider2-v: How far are multimodal agents from

automating data science and engineering workflows? In Globerson, A., Mackey, L.,

Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Advances in Neural

Information Processing Systems, volume 37, pages 107703–107744. Curran Associates, Inc.

Chapyter (2023). Chapyter. https://github.com/chapyter/chapyter.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., et al. (2022).

Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.

Colaprico, A., Silva, T. C., Olsen, C., Garofano, L., Cava, C., Garolini, D., Sabedot, T. S.,

and et al. (2015). Tcgabiolinks: An r/bioconductor package for integrative analysis of tcga

data. Nucleic Acids Research, 44(8):e71–71.

Dash, T., Chitlangia, S., Ahuja, A., and Srinivasan, A. (2022). A review of some techniques

for inclusion of domain-knowledge into deep neural networks. Sci. Rep., 12(1):1040.

Dinh, A., Miertschin, S., Young, A., and Mohanty, S. D. (2023). National Health and

Nutrition Health Survey 2013-2014 (NHANES) Age Prediction Subset. UCI Machine

Learning Repository. DOI: https://doi.org/10.24432/C5BS66.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., and Tang, J. (2022). Glm: General

language model pretraining with autoregressive blank infilling. In ACL, pages 320–335.

FHS (1948). Framingham heart study dataset. https://www.framinghamheartstudy.org.

Fisher, R. A. (1988). Iris. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C56C76.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., et al. (2023). Retrieval-augmented

generation for large language models: A survey. arXiv preprint arXiv:2312.10997.

Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N. V., Wiest, O., and Zhang, X.

(2024). Large language model based multi-agents: A survey of progress and challenges.

arXiv preprint arXiv:2402.01680.

Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley, R. T.,

Haubrich, R. H., et al. (1996). A trial comparing nucleoside monotherapy with combination

therapy in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic millimeter. aids

clinical trials group study 175 study team. N. Engl. J. Med., 335(15):1081–1090.

Hong, S., Lin, Y., Liu, B., Wu, B., Li, D., Chen, J., et al. (2024). Data interpreter: An llm

agent for data science. arXiv preprint arXiv:2402.18679.

Acc
ep

te
d

M
an

us
cr

ipt

Hong, S., Zheng, X., Chen, J., Cheng, Y., Wang, J., Zhang, C., Wang, Z., Yau, S. K. S., Lin,

Z., Zhou, L., et al. (2023). Metagpt: Meta programming for multi-agent collaborative

framework. arXiv preprint arXiv:2308.00352.

Huang, D., Bu, Q., Zhang, J. M., Luck, M., and Cui, H. (2023a). Agentcoder: Multi-agent-

based code generation with iterative testing and optimisation. arXiv preprint

arXiv:2312.13010.

Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., et al. (2023b). A survey on

hallucination in large language models: Principles, taxonomy, challenges, and open

questions. arXiv preprint arXiv:22311.05232.

Interpreter, O. (2023). Open interpreter. https://www.openinterpreter.com.

Janosi, A., Steinbrunn, W., Pfisterer, M., and Detrano, R. (1988). Heart Disease. UCI

Machine Learning Repository. DOI: https://doi.org/10.24432/C52P4X.

Kaggle SAD (2016). Student admission dataset.

https://www.kaggle.com/datasets/mohansacharya/graduate-admissions.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., et al. (2023). Efficient

memory management for large language model serving with pagedattention. In SOSP, page

611–626.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., et al. (2020). Retrieval-

augmented generation for knowledge-intensive nlp tasks. In NeurIPS, pages 9459–9474.

Mialon, G., Dessì, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R., Rozière, B.,

Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., et al. (2023). Augmented language models: a

survey. arXiv preprint arXiv:2302.07842.

Nash, W., Sellers, T., Talbot, S., Cawthorn, A., and Ford, W. (1995). Abalone. UCI Machine

Learning Repository. DOI: https://doi.org/10.24432/C55C7W.

Oakes, B. J., Famelis, M., and Sahraoui, H. (2024). Building domain-specific machine

learning workflows: A conceptual framework for the state of the practice. ACM Trans. Softw.

Eng. Methodol., 33(4):1–50.

OpenAI (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Park, S., Wang, A. Y., Kawas, B., Liao, Q. V., Piorkowski, D., and Danilevsky, M. (2021).

Facilitating knowledge sharing from domain experts to data scientists for building nlp

models. In Proceedings of the 26th International Conference on IUI, pages 585–596.

Acc
ep

te
d

M
an

us
cr

ipt

Pils, D., Hager, G., Tong, D., Aust, S., et al. (2012). Validating the impact of a molecular

subtype in ovarian cancer on outcomes: a study of the ovcad consortium. Cancer Science,

103(7):1334–1341.

Piotrowski, T. J., Cavalcante, R. L., and Gabor, M. (2021). Fixed points of nonnegative

neural networks. arXiv preprint arXiv:2106.16239.

Python Software Foundation (2023). Python: A programming language.

Qi, H. and Sun, D. (2006). A quadratically convergent newton method for computing the

nearest correlation matrix. SIAM J. Matrix Anal. Appl., 28(2):360–385.

Qiao, B., Li, L., Zhang, X., He, S., Kang, Y., Zhang, C., et al. (2023). Taskweaver: A code-

first agent framework. arXiv preprint arXiv:2311.17541.

R Core Team (2023). R: A language and environment for statistical computing.

Rage, U. K., Pamalla, V., Toyoda, M., and Kitsuregawa, M. (2024). Pami: An open-source

python library for pattern mining. J. Mach. Learn. Res., 25(209):1–6.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese

bert-networks. In EMNLP, pages 3982–3992.

SAS Institute Inc. (2015). Sas/stat® 14.1 user’s guide.

Sun, M., Han, R., Jiang, B., Qi, H., Sun, D., Yuan, Y., and Huang, J. (2024). A survey on

large language model-based agents for statistics and data science. arXiv preprint

arXiv:2412.14222.

Tfekci, P. and Kaya, H. (2014). Combined Cycle Power Plant. UCI Machine Learning

Repository. DOI: https://doi.org/10.24432/C5002N.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., et al. (2023).

Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Tu, X., Zou, J., Su, W., and Zhang, L. (2024). What should data science education do with

large language models? Harvard Data Science Review, 6(1).

Weihs, C. and Ickstadt, K. (2018). Data science: the impact of statistics. Int. J. Data Sci.

Anal., 6:189–194.

Weissgerber, T. L., Garovic, V. D., Milin-Lazovic, J. S., Winham, S. J., Obradovic, Z.,

Trzeciakowski, J. P., and Milic, N. M. (2016). Reinventing biostatistics education for basic

scientists. PLOS Biol., 14(4):e1002430.

Wolberg, W., Mangasarian, O., Street, N., and Street, W. (1995). Breast Cancer Wisconsin

(Diagnostic). UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5DW2B.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., et al. (2023). Autogen: Enabling next-

gen llm applications via multi-agent conversation. arXiv preprint arXiv:2308.08155.

Acc
ep

te
d

M
an

us
cr

ipt

Yeh, I.-C. (2007). Concrete Compressive Strength. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5PK67.

Zhang, L., Zhang, Y., Ren, K., Li, D., and Yang, Y. (2023). Mlcopilot: Unleashing the power

of large language models in solving machine learning tasks. arXiv preprint

arXiv:2304.14979.

Zhang, T., Patil, S. G., Jain, N., Shen, S., Zaharia, M., Stoica, I., and Gonzalez, J. E. (2024).

Raft: Adapting language model to domain specific rag. arXiv preprint arXiv:2403.10131.

Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu, J., Chen, W., and Yue, X. (2024a).

Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv

preprint arXiv:2402.14658.

Zheng, Y., Zhang, R., Zhang, J., Ye, Y., Luo, Z., Feng, Z., and Ma, Y. (2024b).

Llamafactory: Unified efficient fine-tuning of 100+ language models. In ACL, pages 400–

410.

Zhou, W., Jiang, Y. E., Li, L., Wu, J., Wang, T., Qiu, S., et al. (2023). Agents: An open-

source framework for autonomous language agents. arXiv preprint arXiv:2309.07870.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 1: Overview of LAMBDA. LAMBDA features two core agents: the “programmer” for

code generation and the “inspector” for error evaluation. The programmer writes and

executes code based on user instructions, while the inspector suggests refinements if errors

occur. This iterative process continues until the code is error-free or a maximum number of

attempts is reached. A human intervention mechanism allows users to modify and run the

code directly when needed.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 2: Knowledge Integration Mechanism in LAMBDA: Knowledge Matching selects

codes from the knowledge base by comparing descriptions with the instruction. Two

integration modes are available: ‘Full’ mode injects the entire knowledge code into the LLM

via ICL, while ‘Core’ mode segments the code into essential usage for ICL and runnable code

for back-end execution.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 3: Prompt example for the data analyst.

Figure 4: Prompt example for the dataset.

Figure 5: Prompt example for the execution result.

Figure 6: Prompt example for inspector.
Acc

ep
te

d
M

an
us

cr
ipt

Figure 7: Prompt example for code correction.

Figure 8: Prompt example for knowledge integration.

Acc
ep

te
d

M
an

us
cr

ipt

Figure 9: An example of using LAMBDA for classification analysis with the Wine dataset.

Acc
ep

te
d

M
an

us
cr

ipt

Table 1: Datasets used in this study. The Genomic datasets include the following three

datasets: TCGAmirna (Bentink et al., 2012), EMTAB386 (Colaprico et al., 2015), and

GSE49997 (Pils et al., 2012).

DataSets Usage

AIDS Clinical Trials Group Study 175 (Hammer et al., 1996) Classification

NHANES (Dinh et al., 2023). Classification

Breast Cancer Wisconsin (Wolberg et al., 1995) Classification

Wine (Aeberhard and Forina, 1991) Classification

Concrete Compressive Strength (Yeh, 2007) Regression

Combined Cycle Power Plant (Tfekci and Kaya, 2014) Regression

Abalone (Nash et al., 1995) Regression - Case Study

Airfoil Self-Noise (Brooks et al., 2014) Regression

Iris (Fisher, 1988) Classification - Case Study

Heart Disease (Janosi et al., 1988) Regression - Case Study

Genomic Datasets (Anh, 2023) High-Dimensional Data

Framingham Heart Study Dataset (FHS, 1948) Missing Data

Student Admission Records (Kaggle SAD, 2016) Missing Data

MINIST (LeCun et al., 1998) Image Data

SMS Spam (Almeida et al., 2011) Text Data

Acc
ep

te
d

M
an

us
cr

ipt

Table 2: The experimental results obtained using LAMBDA and R are presented, with the R

results indicated in parentheses. Classification problems were evaluated using accuracy,

where higher values indicate better performance. Regression problems were assessed using

mean squared error (MSE), where lower values are preferable. All results were derived from

5-fold cross-validation. The difference result bewteen LAMBDA and R is introduced by

different data processing, hyper-paprameters and cross-validation.

Model Datasets

AIDS (%) NHANES (%) Breast Cancer(%) Wine(%)

Classification Logistic Regression 86.54 (86.44) 99.43 (99.96) 98.07 (97.72) 98.89 (98.86)

SVM 88.45 (88.59) 98.82 (98.86) 97.72 (98.25) 98.89 (98.33)

Neural Network 88.82 (87.89) 99.91 (99.91) 97.82 (97.01) 82.60 (98.87)

Decision Tree 87.70 (88.78) 100 (100) 94.26 (93.32) 92.14 (90.91)

Random Forest 89.29 (88.73) 100 (100) 96.84 (95.96) 98.33 (98.30)

Bagging 89.62 (88.82) 100 (100) 96.49 (94.90) 96.65 (96.60)

Gradient Boost 89.20 (88.83) 100 (100) 96.84 (94.74) 96.65 (98.89)

XGBoost 89.67 (89.62) 100 (100) 97.54 (97.19) 95.54 (98.87)

AdaBoost 88.92 (89.10) 100 (100) 97.72 (97.55) 93.89 (97.71)

Best Accuracy 89.67 (89.62) 100 (100) 98.07 (98.25) 98.89 (98.89)

Concrete Power Plant Abalone Airfoil

Regression Linear Regression 0.4596 (0.3924) 0.0714 (0.0713) 0.5086 (0.6867) 0.5717 (0.6972)

Lasso 0.5609 (0.3918) 0.0718 (0.0713) 0.8042 (0.4739) 0.5738 (0.4886)

SVR 0.4012 (0.4780) 0.0534 (0.0489) 0.4542 (0.4408) 0.3854 (0.3725)

Neural Network 0.2749 (0.3055) 0.0612 (0.0567) 0.4551 (0.7185) 0.4292 (0.2604)

Decision Tree 0.5242 (0.5837) 0.0551 (0.1175) 0.5566 (0.5472) 0.3823 (0.2559)

Random Forest 0.4211 (0.2755) 0.0375 (0.0363) 0.4749 (0.4460) 0.2655 (0.3343)

Gradient Boost 0.3414 (0.3605) 0.0315 (0.0538) 0.4778 (0.5840) 0.2528 (0.2888)

XGBoost 0.3221 (0.2991) 0.0319 (0.0375) 0.4778 (0.4441) 0.2741 (0.2832)

CatBoost 0.2876 (0.4323) 0.0325 (0.0568) 0.4795 (0.4516) 0.2529 (0.2638)

Best MSE 0.2749 (0.2755) 0.0315 (0.0363) (0.4542) 0.4408 0.2528 (0.2559)

Acc
ep

te
d

M
an

us
cr

ipt

Table 3: Experiment datasets with their sizes and dimensions (rows, columns).

Data TCGAmirna EMTAB386 GSE49997

(Size, Dimension) (544, 802) (129, 10360) (194, 16051)

Table 4: Performance on the high-dimensional datasets. The results are reported in terms of

accuracy through 5-fold cross-validation.

Model TCGAmirna (%) EMTAB386 (%) GSE49997 (%)

Logistic Regression 52.58 54.18 67.52

Decision Tree 54.42 57.45 63.45

Random Forest 55.16 61.20 67.54

Bagging 56.62 58.21 70.63

Gradient Boosting 54.78 55.08 70.62

XGBoost 55.15 58.15 70.62

AdaBoost 55.15 57.45 70.62

Neural Network 54.22 61.23 66.48

Best 56.62 61.23 70.63

Acc
ep

te
d

M
an

us
cr

ipt

Table 5: Performance on Framingham, StuRecord and Heart Disease datasets. The results are

reported in terms of accuracy through 5-fold cross-validation.

Model Framingham (%) StuRecord (%) Heart Disease (%)

Logistic Regression 85.35 50.36 59.41

Neural Network 84.95 57.28 60.40

Decision Tree 84.27 52.96 52.49

Random Forest 85.19 55.40 60.39

Bagging 85.02 58.65 60.06

Gradient Boosting 85.12 60.50 58.41

XGBoost 85.19 61.05 60.71

AdaBoost 84.98 56.63 59.42

Best 85.35 61.05 60.40

Table 6: Performance on the MNIST Dataset.

Model Accuracy (%)

CNN 99.19

Transformer 97.23

Table 7: Performance of different backbones on the SPAM classification task.

Model Accuracy (%)

Multinomial Naive Bayes 98.39

BERT 99.37

 Acc
ep

te
d

M
an

us
cr

ipt

Table 8: Performance of the Knowledge Integration Mechanism. In the table, ‘PM’ refers to

pattern mining, ‘NCM’ refers to the nearest correlation matrix, and ‘FPNENN’ stands for

fixed points in non-negative neural networks. The values represent the performance scores,

with failure reasons noted in brackets. Specifically, 1: code error and execution error; 2:

exceeded runtime limit; 3: code error but successful execution; 4: right code but execution

error due to other issues; 5: right code and successful execution.

PM NCM FPNENN

GPT-4-Advanced Data Analysis (OpenAI, 2023) 0.80 (4) 0 (1) 0 (1)

ChatGLM-Data Analysis (Du et al., 2022) 0 (2) 0 (2) 0 (2)

OpenInterpreter (Interpreter, 2023) 0 (2) 0 (2) 0 (2)

OpenCodeInterpreter (Zheng et al., 2024a) 1.00 (5) 0 (1) 0 (1)

Chapyter (Chapyter, 2023) 0 (2) 0 (2) 0 (2)

DataInterpreter (Tools) (Hong et al., 2024) 1.00 (5) 1.00 (5) 1.00 (5)

TaskWeaver (Plugins) (Qiao et al., 2023) 1.00 (5) 1.00 (5) 1.00 (5)

LAMBDA (Knowledge) 1.00 (5) 1.00 (5) 1.00 (5)

Table 9: The results of case study on Misalignment between Tools and Instructions. Both

Plugins and Tools Integration directly use the tools and are not aware of the Misalignment

between Tools and Instructions.

Methods Misalignment Loss Misalignment Network

TaskWeaver (Plugins) ✗ Directly using the plugin ✗ Directly using the plugin

Data Interpreter (Tools) ✗ Directly use the tool ✗ Directly use the tool

LAMBDA (Knowledge)
 Alignment  Alignment

Acc
ep

te
d

M
an

us
cr

ipt

	LAMBDA: A Large Model Based Data Agent

